Market efficiency analysis using AI models based on Investors’ Mood

Market efficiency analysis using AI models based on Investors’ Mood

##plugins.themes.bootstrap3.article.main##

Abstract

The Efficient Market Hypothesis assumes that stock prices in financial markets incorporate all the historical information in any of its forms (weak, semi-strong and strong). The aim of this study is to validate this hypothesis.
This study uses artificial intelligence models designed to predict IBEX trends, based on investor mood, extracting information from the big data and using natural language processing algorithms. The results of the study show that the success rate of a system that trains for only 6 months is higher than a system that uses all the available historical information. Investment strategies can also be based on the forecasts of the artificial intelligence models, which can beat the market, by setting up different trading systems for different degrees of risk, depending on the probability threshold provided by the model considered. These results imply that the Spanish financial market has a short-term memory, and does not include older information and therefore does not fulfill the efficient market hypothesis assumptions.
KEY WORDS Big data, IBEX, Bayesian Networks, investors’ mood, trading systems,
market efficiency.

Downloads

Download data is not yet available.

##plugins.themes.bootstrap3.article.details##

Author Biographies / See

Gómez Martínez Raúl

PhD in Business Economics and Finance. Universidad Rey Juan Carlos, Madrid, Spain

Paola Plaza Casado

PhD in Financial Economics and Accounting. Universidad Rey Juan Carlos, Madrid, Spain

Miguel Prado Román

PhD in Financial Economics and Accounting. Universidad Rey Juan Carlos, Madrid, Spain

References

Coates, J.M. and Herbert, J. (2008). Endogenous steroids and financial risk taking on a London trading floor. Proceedings of the National Academy of Sciences, 105(16), 6167-6172. https://doi.org/10.1073/pnas.0704025105 DOI: https://doi.org/10.1073/pnas.0704025105

Cohen, G. and Kudryavtsev, A. (2012). Investor Rationality and Financial Decisions. Journal of Behavioral Finance, 13(1), 11-16. https://doi.org/10.1080/15427560.2012.653020 DOI: https://doi.org/10.1080/15427560.2012.653020

Corredor, P., Ferrer, E. y Santamaría, R. (2013). Elsentimiento del inversor y las rentabilidades delas acciones. El caso español. Spanish Journal ofFinance and Accounting, 42(158), 211-237

https://doi.org/10.1080/02102412.2013.10779746 DOI: https://doi.org/10.1080/02102412.2013.10779746

Darling, P.G. (1955). A surrogate measure of business confidence and its relation to stock prices. The Journal of Finance, 10(4), 442-458. https://doi.org/10.1111/j.1540-6261.1955.tb01297.x DOI: https://doi.org/10.1111/j.1540-6261.1955.tb01297.x

Doran, J.S., Peterson, D.R. and Wright, C. (2010). Confidence, opinions of market efficiency, and investment behavior of finance professors. Journal of Financial Markets, 13(1), 174-195.

https://doi.org/10.1016/j.finmar.2009.09.002 DOI: https://doi.org/10.1016/j.finmar.2009.09.002

Edmans, A., García, D. and Norli, Ø. (2007). Sports sentiment and stock returns. The Journal of Finance, 62(4), 1967-1998 https://doi.org/10.1111/j.1540-6261.2007.01262.x DOI: https://doi.org/10.1111/j.1540-6261.2007.01262.x

Fama, E. and French, K. (1998). Market efficiency, longterm returns and behavioral finance. Journal of Financial Economics, 49(3), 283-306. https://doi.org/10.1016/S0304-405X(98)00026-9 DOI: https://doi.org/10.1016/S0304-405X(98)00026-9

Feldman, T. (2011). Behavioral Biases and Investor Performance. Algorithmic Finance, 1(1), 45-55. https://doi.org/10.3233/AF-2011-005 DOI: https://doi.org/10.3233/AF-2011-005

Gómez, R. (2013). Señales de inversión basadas en un índice de aversión al riesgo. Investigaciones Europeas de Dirección y Economía de la Empresa, 19(3), 147- 157. https://doi.org/10.1016/j.iedee.2012.12.001 DOI: https://doi.org/10.1016/j.iedee.2012.12.001

Gómez, R. y Prado, C. (2014). Sentimiento del inversor, selecciones nacionales de fútbol y su influencia sobre sus índices nacionales. Revista Europea de Dirección y Economía de la Empresa, 23(3), 99-114. https://doi.org/10.1016/j.redee.2014.02.001 DOI: https://doi.org/10.1016/j.redee.2014.02.001

Hasanhodzic, J., Lo, A.W. and Viola, E. (2011). A computational view of market efficiency. Quantitative Finance, 11(7), 1043-1050. https://doi.org/10.1080/14697688.2010.541487 DOI: https://doi.org/10.1080/14697688.2010.541487

Hilton, D.J. (2001). The Psychology of Financial Decision- Making: Applications to Trading, Dealing, and Investment Analysis. Journal of Psychology and Financial Markets, 2(1), 37-53.

https://doi.org/10.1207/S15327760JPFM0201_4 DOI: https://doi.org/10.1207/S15327760JPFM0201_4

Hirshleifer, D. and Shumway, T. (2003). Good day sunshine: Stock returns and the weather. The Journal of Finance, 58(3), 1009-1032. https://doi.org/10.1111/1540-6261.00556 DOI: https://doi.org/10.1111/1540-6261.00556

Huynh, T.D. and Smith, D.R. (2017). Stock Price Reaction to News: The Joint Effect of Tone and Attention on Momentum. Journal of Behavioral Finance, 18(3), 304-328. https://doi.org/10.1080/15427560.2017.1339190 DOI: https://doi.org/10.1080/15427560.2017.1339190

Jacobsen, B. and Marquering, W. (2008). Is it the weather? Journal of Banking and Finance, 32(4), 526-540. https://doi.org/10.1016/j.jbankfin.2007.08.004 DOI: https://doi.org/10.1016/j.jbankfin.2007.08.004

Kaplanski, G. and Levy, H. (2010). Exploitable predictable irrationality: The FIFA world cup effect on the U.S. stock market. The Journal of Financial and Quantitative Analysis, 45(2), 535-553. https://doi.org/10.1017/S0022109010000153 DOI: https://doi.org/10.1017/S0022109010000153

Kirilenko, A., Sowers, R. and Meng, X. (2013). A Multiscale Model of High-Frequency Trading. Algorithmic Finance, 2(1), 59-98. https://doi.org/10.3233/AF-13017 DOI: https://doi.org/10.3233/AF-13017

Lemmon, M. and Portniaguina, E. (2006). Consumer confidence and asset prices: Some empirical evidence. The Review of Financial Studies, 19(4), 1499-1529. https://doi.org/10.1093/rfs/hhj038 DOI: https://doi.org/10.1093/rfs/hhj038

Leshik, E. and Crall, J. (2011). An Introduction to Algorithmic Trading: Basic to Advanced Strategies. New Jersey, USA: Wiley. https://doi.org/10.1002/9781119206033 DOI: https://doi.org/10.1002/9781119206033

Liu, S. (2015). Investor Sentiment and Stock Market Liquidity. Journal of Behavioral Finance, 16(1), 51-67. https://doi.org/10.1080/15427560.2015.1000334 DOI: https://doi.org/10.1080/15427560.2015.1000334

Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77-91. https://doi.org/10.1111/j.1540-6261.1952.tb01525.x DOI: https://doi.org/10.1111/j.1540-6261.1952.tb01525.x

Maymin, P. (2011). Markets are Efficient if and Only if P = NP. Algorithmic Finance, 1(1), 1-11. https://doi.org/10.3233/AF-2011-007 DOI: https://doi.org/10.3233/AF-2011-007

Mishra, V. and Smyth, R. (2010). An examination of the impact of India's performance in one-day cricket internationals on the Indian stock market. Pacific- Basin Finance Journal, 18(3), 319-334. https://doi.org/10.1016/j.pacfin.2010.02.005 DOI: https://doi.org/10.1016/j.pacfin.2010.02.005

Moat, H. et al. (2013). Quantifying Wikipedia usage patterns before stock market moves. Scientific Reports, 3, 1-5. https://doi.org/10.1038/srep01801 DOI: https://doi.org/10.1038/srep01801

Narayan, S. and Narayan, P.K. (2017). Are Oil Price News Headlines Statistically and Economically Significant for Investors? Journal of Behavioral Finance, 18(3), 258-270. https://doi.org/10.1080/15427560.2017.1308942 DOI: https://doi.org/10.1080/15427560.2017.1308942

Nofsinguer, J.R. (2005). Social Mood and Financial Economics. Journal of Behavioral Finance, 6(3), 144-160. https://doi.org/10.1207/s15427579jpfm0603_4 DOI: https://doi.org/10.1207/s15427579jpfm0603_4

Olsen, R.A. and Cox, C.M. (2001). The Influence of Gender on the Perception and Response to Investment Risk: The Case of Professional Investors. Journal of Psychology and Financial Markets, 2(1), 29-36. https://doi.org/10.1207/S15327760JPFM0201_3 DOI: https://doi.org/10.1207/S15327760JPFM0201_3

Schmitz, J. (2010). Algorithmic Trading in the Iowa Electronic Markets. Algorithmic Finance, 1(2), 157-181. https://doi.org/10.3233/AF-2011-012 DOI: https://doi.org/10.3233/AF-2011-012

Seyhun, H.N. (1988). The January effect y aggregate insider trading. The Journal of Finance, 43(1), 129-141 https://doi.org/10.1111/j.1540-6261.1988.tb02593.x DOI: https://doi.org/10.1111/j.1540-6261.1988.tb02593.x

Shang, Z., Brooks, C. and McCloy, R. (2014). Does more detailed information mean better performance? An experiment in information explicitness. Review of Behavioural Finance, 6(2), 86103. https://doi.org/10.1108/RBF-10-2013-0036 DOI: https://doi.org/10.1108/RBF-10-2013-0036

Sharpe, W. (1994). The Sharpe ratio. The Journal of Portfolio Management, 21(1), 49-58. https://doi.org/10.3905/jpm.1994.409501 DOI: https://doi.org/10.3905/jpm.1994.409501

Shiller, R.J. (2000). Measuring Bubble Expectations and Investor Confidence. Journal of Psychology and Financial Markets, 1(1), 49-60. https://doi.org/10.1207/S15327760JPFM0101_05 DOI: https://doi.org/10.1207/S15327760JPFM0101_05

Yuan, K., Zheng, L. and Zhu, Q. (2006). Are investors moonstruck? Lunar phases and stock returns. Journal of Empirical Finance, 13(1), 1-23. https://doi.org/10.1016/j.jempfin.2005.06.001 DOI: https://doi.org/10.1016/j.jempfin.2005.06.001

Wu, K. et al. (2013). A Big Data Approach to Analyzing Market Volatility. Algorithmic Finance, 2(3-4), 241-267. https://doi.org/10.3233/AF-13030 DOI: https://doi.org/10.3233/AF-13030

Cited by