Towards Association Rule-based Item Selection Strategy in Computerized Adaptive Testing

Towards Association Rule-based Item Selection Strategy in Computerized Adaptive Testing

##plugins.themes.bootstrap3.article.main##

Josué Pacheco Ortiz Tecnológico Nacional de México
Lisbeth Rodríguez Mazahua Tecnológico Nacional de México
Jezreel Mejía miranda Centro de Investigación en Matemáticas CIMAT
Giner Alor Hernández Tecnológico Nacional de México
Ulises Juárez Martínez Tecnológico Nacional de México
Resumen

Una de las etapas más importantes de las pruebas adaptativas informatizadas es la selección de ítems, en la cual se utilizan diversos métodos que presentan ciertas debilidades al momento de su aplicación. Así, en este trabajo, se propone la integración de la minería de reglas de asociación como criterio de selección de ítems en un sistema CAT. Se presenta el análisis de algoritmos de minería de reglas de asociación como Apriori, FP-Growth, PredictiveApriori y Tertius en dos conjuntos de datos con el fin de conocer las ventajas y desventajas de cada algoritmo y elegir el más adecuado. Se compararon los algoritmos teniendo en cuenta el número de reglas descubiertas, el soporte y confianza promedios y la velocidad. Según los experimentos, Apriori encontró reglas con mayor confianza y soporte en un menor tiempo.

Palabras clave

Descargas

Los datos de descargas todavía no están disponibles.

##plugins.themes.bootstrap3.article.details##

Biografía del autor/a / Ver

Josué Pacheco Ortiz, Tecnológico Nacional de México

Master in Administrative Engineering.

Lisbeth Rodríguez Mazahua, Tecnológico Nacional de México

PhD in Computer Science

Jezreel Mejía miranda, Centro de Investigación en Matemáticas CIMAT

PhD in Computer Science

Isaac Machorro Cano, Universidad del Papaloapan

PhD in Engineering Sciences

Giner Alor Hernández, Tecnológico Nacional de México

PhD in Electrical Engineering

Ulises Juárez Martínez, Tecnológico Nacional de México

PhD in Science in Electrical Engineering

Referencias

Agrawal, R., Imielinski, T. and Swam, A. (1993). Mining association rules between sets of items in large databases. In Proceedings of the ACM SIGMOD International Conference on Management of Data. https://doi.org/10.1145/170036.170072

Albano, A. et al. (2019). Computerized Adaptive Testing in Early Education: Exploring the Impact of Item Position Effects on Ability Estimation. Journal of Education Measurement, 56(2), 437-451. Bengs, D., Brefeld, U. and Krohne, U. (2018). Adaptive Item Selection Under Matroid Constraints. Journal of Computerized Adaptive Testing, 6(2), 15-36. https://doi.org/10.1111/jedm.12215

Chen, Y. et al. (2017). Research on CAT Unified Model Based on Cognitive Diagnosis Theory. In Proceedings of the 6th International Conference on Information Engineering. https://doi.org/10.1145/3078564.3078566

Chen, J.-H., Chao, H.-Y. and Chen, S.-Y. (2019). A Dynamic Stratification Method for Improving Trait Estimation in Computerized Adaptive Testing Under Item Exposure Control. Applied Psychological Measurement, 44(3), 182-196. https://doi.org/10.1177/0146621619843820

Dahdouh, K. et al. (2019). Association Rules Mining Method of Big Data for E-Learning Recommendation Engine. Advanced Intelligent Systems for Sustainable Development, 5, 477-491. https://doi.org/10.1007/978-3-030-11928-7_43

Djenouri, Y. et al. (2014). An Efficient Measure for Evaluating Association Rules. In 6th International Conference of Soft Computing and Pattern Recognition (SoCPaR), Tunis, Tunisia. https://doi.org/10.1109/SOCPAR.2014.7008041

Du, Y., Li, A. and Chang, H.-H. (2018). Utilizing Response Time in On-the-Fly Multistage Adaptive Testing. Quantitative Psychology, 107-117. https://doi.org/10.1007/978-3-030-01310-3_10

Flach, P. and Lachiche, N. (2001). Confirmation- Guided Discovery of First-Order Rules with Tertius. Machine Learning, 42(1), 61-95. https://doi.org/10.1023/A:1007656703224

Gu, J., Zhou, X. and Yan, X. (2018). Design and Implementation of Students' Score Correlation https://doi.org/10.1145/3206157.3206165

Analysis System. In Proceedings of the 2018 International Conference on Big Data and Education.

Han, J., Kamber, M. and Pei, J. (2012). Data Mining Concepts and Techniques. New York, USA: Elsevier.

Ju, C. et al. (2015). A Novel Method of Interestingness Measures for Association Rules Mining Based on Profit. Discrete Dynamics in Nature and Society, 4, 1-10. https://doi.org/10.1155/2015/868634

Lee, C.-S. et al. (2018). PSO-based Fuzzy Markup Language for Student Learning Performance Evaluation and Educational Application. Transactions on Fuzzy Systems, 26(5), 2618-2633. https://doi.org/10.1109/TFUZZ.2018.2810814

Lin, C.-J. and Chang, H.-H. (2019). Item Selection Criteria with Practical Constraints in Cognitive Diagnostic Computerized Adaptive Testing. Educational and Psychological Measurement, 79(2), 335-357. https://doi.org/10.1177/0013164418790634

Miyazahua, Y. and Ueno, M. (2019). Computerized Adaptive Testing Method Using Integer Programming to Minimize Item Exposure. Advances in Intelligent Systems and Computing, 11(28), 105-113. https://doi.org/10.1007/978-3-030-39878-1_10

Prajapati, D., Garg, S. and Chauhan, N. (2017). Interesting association rule mining with consistent and inconsistent rule detection from big sales data in distributed environment. Future Computing and Informatics Journal, 2(1), 19-30. https://doi.org/10.1016/j.fcij.2017.04.003

Rodríguez-Cuadrado, J. et al. (2020). Merged Tree-CAT: A fast method for building precise Computerized Adaptive Tests based on Decision Trees. Expert Systems with Applications, 143, 113066. https://doi.org/10.1016/j.eswa.2019.113066

Rubio Delgado, E. et al. (2018). Analysis of Medical Opinions about the Nonrealization of Autopsies in a Mexican Hospital Using Association Rules and Bayesian Networks. Scientific Programming, 7, 1-21. https://doi.org/10.1155/2018/4304017

Scheffer, T. (2001). Finding association rules that trade support optimally against confidence. Principles of Data Mining and Knowledge Discovery, 9, 424-435. https://doi.org/10.1007/3-540-44794-6_35

Sheng, C., Bingwei, B. and Jiecheng, Z. (2018). An Adaptive Online Learning Testing System. In ICIET 18 Proceedings of the 6th International Conference on Information and Education Technology. https://doi.org/10.1145/3178158.3178187

Stafford, R. et al. (2019). Comparing computer adaptive testing stopping rules under the generalized partial-credit model. Behavior Research Methods, 51(3), 1305-1320. https://doi.org/10.3758/s13428-018-1068-x

Tokusada, Y. and Hirose, H. (2016). Evaluation of Abilities by Grouping for Small IRT Testing Systems. In 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI), Kumamoto, Japan. https://doi.org/10.1109/IIAI-AAI.2016.50

Wang, F. et al. (2018). Association Rule Mining Based 1 Quantitative Analysis Approach of Household Characteristics Impacts on Residential Electricity Consumption Patterns. Energy Conversion and Management, 171, 839-854. https://doi.org/10.1016/j.enconman.2018.06.017

Yan, X., Zhang, C. and Zhang, S. (2009). Confidence Metrics for Association Rule Mining. Applied Artificial Intelligence, 23(8), 713-737. https://doi.org/10.1080/08839510903208062

Ye, Z. and Sun, J. (2018). Comparing Item Selection Criteria in Multidimensional Computerized Adaptive Testing for Two Item Response Theory Models. In 3rd International Conference on Computational Intelligence and Applications (ICCIA), Hong Kong, China. https://doi.org/10.1109/ICCIA.2018.00008

Yigit, H., Sorrel, M. and de la Torre, J. (2019). Computerized Adaptive Testing for Cognitively Based Multiple-Choice Data. Applied Psychological Measurement, 43(5), 388-401. https://doi.org/10.1177/0146621618798665

Citado por