Determination of the Representative Socioeconomic Level by BSA in the Mexican Republic
Determination of the Representative Socioeconomic Level by BSA in the Mexican Republic
##plugins.themes.bootstrap3.article.main##
The aim of this article is to determine the socioeconomic level (SEL) with disaggregation of the Basic Statistical Area (BSA) in the Mexican Republic. The methodology used is the one established by the Mexican Association of Market Research Agencies (AMAI) along with the National Institute of Statistics and Geography (INEGI). The Clustering of the BSAs was carried out according to variables contained in the Population and Housing Census of 2010, through Gaussian mixture models, learning neural networks and finally, by defining the labels corresponding to each SEL. We found the existence of a representative SEL for each BSA. In addition, the definition of each socioeconomic level shows good results with an average of 90.86% of correctly labeled elements.
Downloads
##plugins.themes.bootstrap3.article.details##
Adnan, M., Longley, P. A., Singleton, A. D., & Brunsdon, C. (2010). Towards real-time geodemographics: Clustering algorithm performance for large multidimensional spatial databases. Transactions in GIS, 14(3), 283-297. https://doi.org/10.1111/j.1467-9671.2010.01197.x
https://doi.org/10.1111/j.1467-9671.2010.01197.x DOI: https://doi.org/10.1111/j.1467-9671.2010.01197.x
Aghdaie, M. H., Zolfani, S. H., & Zavadskas, E. K. (2013). A hybrid approach for market segmentation and market segment evaluation and selection: An integration of data mining and madm. Transformations in Business and Economics, 12(2 B).
Allenby, G., Fennell, G., Bemmaor, A., Bhargava, V., Dawley, J., Dickson, P., … Yang, S. (2002). Market Segmentation Research: Beyond within and across Group Differences. Marketing Letters, 13(3), 233-243.
https://doi.org/10.1023/A:1020226922683 DOI: https://doi.org/10.1023/A:1020226922683
AMAI. (2015). Actualización Regla AMAI de los Niveles Socioecónomicos 8x7. México, D.F. Retrieved from http://amai.org/privado/niveles.php
Andrews, R. L., Brusco, M., Currim, I. S., & Davis, B. (2010). An empirical comparison of methods for clustering problems: Are there benefits from having a statistical model? Review of Marketing Science, 8(1).
https://doi.org/10.2202/1546-5616.1117 DOI: https://doi.org/10.2202/1546-5616.1117
Aparna, K., & Nair, M. K. (2015). Comprehensive study and analysis of partitional data clustering techniques. International Journal of Business Analytics (IJBAN), 2(1), 23-38.
https://doi.org/10.4018/ijban.2015010102 DOI: https://doi.org/10.4018/ijban.2015010102
Beane, T. P., & Ennis, D. M. (1987). Market Segmentation: A Review. European Journal of Marketing, 21(5), 20-42. https://doi.org/10.1108/EUM0000000004695
https://doi.org/10.1108/EUM0000000004695 DOI: https://doi.org/10.1108/EUM0000000004695
Bradley, R. H., & Corwyn, R. F. (2002). Socioeconomic status and child development. Annual Reviews in Psychology, 53, 371-399. https://doi.org/10.1146/annurev.psych.53.100901.135233
https://doi.org/10.1146/annurev.psych.53.100901.135233 DOI: https://doi.org/10.1146/annurev.psych.53.100901.135233
Brochado, A. O., & Martins, F. V. (2015). Identifying Small Market Segments with Mixture Regression Models. International Journal of Latest Trends in Finance and Economic Sciences, 4(4), 9.
Bukhari, S. S. (2011). Green Marketing and its impact on consumer behavior. Europian Journal of Business and Management, 3(4), 375-384.
Capó, M., Pérez, A., & Lozano, J. A. (2017). An efficient approximation to the K-means clustering for massive data. Knowledge-Based Systems, 117, 56-69. https://doi.org/10.1016/j.knosys.2016.06.031
https://doi.org/10.1016/j.knosys.2016.06.031 DOI: https://doi.org/10.1016/j.knosys.2016.06.031
Cliquet, G. (2013). Geomarketing: Methods and strategies in spatial marketing. John Wiley & Sons.
https://doi.org/10.1002/9781118614020 DOI: https://doi.org/10.1002/9781118614020
de la Garza García, J. (1995). Análisis de la informaci{ó}n mercadológica: a través de la estadística multivariante. Alhambra Mexicana.
Dickson, P. R., & Ginter, J. L. (1987). Market segmentation, product differentiation, and marketing strategy. The Journal of Marketing, 1-10.
https://doi.org/10.1177/002224298705100201 DOI: https://doi.org/10.1177/002224298705100201
Everitt, B., Landau, S., Leese, M., & Stahl, D. (2001). Cluster analysis. https://doi.org/10.1177/014662167800200315
https://doi.org/10.1177/014662167800200315 DOI: https://doi.org/10.1177/014662167800200315
Fahad, A., Alshatri, N., Tari, Z., Alamri, A., Khalil, I., Zomaya, A. Y., … Bouras, A. (2014). A survey of clustering algorithms for big data: Taxonomy and empirical analysis. IEEE Transactions on Emerging Topics in Computing, 2(3), 267-279.
https://doi.org/10.1109/TETC.2014.2330519 DOI: https://doi.org/10.1109/TETC.2014.2330519
Fisher, C., Bashyal, S., & Bachman, B. (2012). Demographic impacts on environmentally friendly purchase behaviors. Journal of Targeting, Measurement and Analysis for Marketing, 20(3-4), 172-184.
https://doi.org/10.1057/jt.2012.13 DOI: https://doi.org/10.1057/jt.2012.13
Gan, G., Ma, C., & Wu, J. (2007). Data Clustering: Theory, Algorithms, and Applications. ASASIAM Series on Statistics and Applied Probability (Vol. 20). https://doi.org/10.1111/j.1751-5823.2007.00039_2.x DOI: https://doi.org/10.1137/1.9780898718348
https://doi.org/10.1111/j.1751-5823.2007.00039_2.x DOI: https://doi.org/10.1111/j.1751-5823.2007.00039_2.x
George, M. R. W., Yang, N., Jaki, T., Feaster, D. J., Lamont, A. E., Wilson, D. K., & Van Horn, M. L. (2013). Finite mixtures for simultaneously modeling differential effects and nonnormal distributions. Multivariate Behavioral Research, 48(6), 816-844.
https://doi.org/10.1080/00273171.2013.830065 DOI: https://doi.org/10.1080/00273171.2013.830065
Gottfried, A. W. (1985). Measures of socioeconomic status in child development research: Data and recommendations. Merrill-Palmer Quarterly (1982-), 85-92.
Grekousis, G., & Thomas, H. (2012). Comparison of two fuzzy algorithms in geodemographic segmentation analysis: The fuzzy C-means and Gustafson-Kessel methods. Applied Geography, 34. https://doi.org/10.1016/j.apgeog.2011.11.004
https://doi.org/10.1016/j.apgeog.2011.11.004 DOI: https://doi.org/10.1016/j.apgeog.2011.11.004
Gutiérrez, B. (2016). Antropología del consumidor tapatío. Guadalajara, Jalisco, México.
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate Data Analysis. Vectors. https://doi.org/10.1016/j.ijpharm.2011.02.019
https://doi.org/10.1016/j.ijpharm.2011.02.019 DOI: https://doi.org/10.1016/j.ijpharm.2011.02.019
Heath, J. (2012). Lo que indican los indicadores: c{ó}mo utilizar la informaci{ó}n estad{'i}stica para entender la realidad econ{ó}mica de M{é}xico.
Hiziroglu, A. (2013). A neuro-fuzzy two-stage clustering approach to customer segmentation. Journal of Marketing Analytics, 1(4), 202-221.
https://doi.org/10.1057/jma.2013.17 DOI: https://doi.org/10.1057/jma.2013.17
Hollingshead, A. . (1975). Four Factor index of social status (No. 208265). New Haven.
INEC. (2013). Determinación de los coeficientes de variación. Quito, Ecuador.
INEGI. (2002). Regiones Socioecónomicas de México. México, D.F.
Kim, T., & Lee, H.-Y. (2011). External validity of market segmentation methods: a study of buyers of prestige cosmetic brands. European Journal of Marketing, 45(1/2), 153-169.
https://doi.org/10.1108/03090561111095630 DOI: https://doi.org/10.1108/03090561111095630
Kotler, P., & Armstrong, G. (2012). Marketing.
Krawczyk, B. (2016). Knowle dge-Base d Systems Dynamic classifier selection for one-class classification, 107, 43-53. https://doi.org/10.1016/j.knosys.2016.05.054
https://doi.org/10.1016/j.knosys.2016.05.054 DOI: https://doi.org/10.1016/j.knosys.2016.05.054
Larsen, N. (2010). Market Segmentation - A Framework for Determining the Right Target Customers. Aarhus School of Business. Retrieved from http://pure.au.dk/portal/files/11462/ba.pdf
Levin, R. I., & Rubin, D. S. (2004). Estadística para administración y economía. Pearson Educación.
Lin, T. I., Lee, J. C., & Yen, S. Y. (2007). Finite mixture modelling using the skew normal distribution. Statistica Sinica, 909-927.
Lopes, L. A., Machado, V. P., Rabêlo, R. A. L., Fernandes, R. A. S., & Lima, B. V. A. (2016). Knowle dge-Base d Systems Automatic labelling of clusters of discrete and continuous data with supervised machine learning. Knowledge-Based Systems, 106, 231-241. https://doi.org/10.1016/j.knosys.2016.05.044
https://doi.org/10.1016/j.knosys.2016.05.044 DOI: https://doi.org/10.1016/j.knosys.2016.05.044
Lopes, L. A., Machado, V. P., & Rabelo, R. D. A. L. (2014). Automatic cluster labeling through Artificial Neural Networks. Proceedings of the International Joint Conference on Neural Networks, 762-769. https://doi.org/10.1109/IJCNN.2014.6889949
https://doi.org/10.1109/IJCNN.2014.6889949 DOI: https://doi.org/10.1109/IJCNN.2014.6889949
Masyn, K. E. (2013). Latent class analysis and finite mixture modeling. In The Oxford Handbook of Quantitative Methods in Psychology: Vol. 2.
https://doi.org/10.1093/oxfordhb/9780199934898.013.0025 DOI: https://doi.org/10.1093/oxfordhb/9780199934898.013.0025
Mihić, M., & Čulina, G. (2006). Buying behavior and consumption: social class versus income. Management, 11(2), 77-92.
Momeni, M., Yazdani, S., & Khorshidi, M. F. (2016). Clustering customers by C-mean method (Case study: Golestan company). International Business Management, 10(8). https://doi.org/10.3923/ibm.2016.1406.1413
Müller, H., & Hamm, U. (2014). Stability of market segmentation with cluster analysis - A methodological approach. Food Quality and Preference, 34, 70-78. https://doi.org/10.1016/j.foodqual.2013.12.004
https://doi.org/10.1016/j.foodqual.2013.12.004 DOI: https://doi.org/10.1016/j.foodqual.2013.12.004
Musyoka, S. M., Mutyauvyu, S. M., Kiema, J. B. K., Karanja, F. N., & Siriba, D. N. (2007). Market segmentation using geographic information systems (GIS): A case study of the soft drink industry in Kenya. Marketing Intelligence & Planning, 25(6), 632-642. https://doi.org/DOI: 10.1108/02634500710819987
https://doi.org/10.1108/02634500710819987 DOI: https://doi.org/10.1108/02634500710819987
Nosi, C., Pratesi, C. A., & D'agostino, A. (2014). A benefit segmentation of the Italian market for full electric vehicles. Journal of Marketing Analytics, 2(2), 120-134.
https://doi.org/10.1057/jma.2014.7 DOI: https://doi.org/10.1057/jma.2014.7
O'Hagan, A., Murphy, T. B., Gormley, I. C., McNicholas, P. D., & Karlis, D. (2016). Clustering with the multivariate normal inverse Gaussian distribution. Computational Statistics & Data Analysis, 93, 18-30.
https://doi.org/10.1016/j.csda.2014.09.006 DOI: https://doi.org/10.1016/j.csda.2014.09.006
Pan, W., Shen, X., & Liu, B. (2013). Cluster analysis: unsupervised learning via supervised learning with a non-convex penalty. Journal of Machine Learning Research, 14(1), 1865-1889.
Ruiz, F. J., Angulo, C., & Agell, N. (2008). IDD: A supervised interval distance-based method for discretization. IEEE Transactions on Knowledge and Data Engineering, 20(9), 1230-1238. https://doi.org/10.1109/TKDE.2008.66
https://doi.org/10.1109/TKDE.2008.66 DOI: https://doi.org/10.1109/TKDE.2008.66
Samarasinghe, S. (2016). Neural networks for applied sciences and engineering: from fundamentals to complex pattern recognition. CRC Press.
Sánchez-hernández, G., Chiclana, F., Agell, N., & Carlos, J. (2013). Knowledge-Based Systems Ranking and selection of unsupervised learning marketing segmentation, 44, 20-33. https://doi.org/10.1016/j.knosys.2013.01.012
https://doi.org/10.1016/j.knosys.2013.01.012 DOI: https://doi.org/10.1016/j.knosys.2013.01.012
Scrucca, L., Fop, M., Murphy, T. B., & Raftery, A. E. (2016). Mclust 5: Clustering, classification and density estimation using gaussian finite mixture models. The R Journal, 8(1), 289.
https://doi.org/10.32614/RJ-2016-021 DOI: https://doi.org/10.32614/RJ-2016-021
Scrucca, L., & Raftery, A. E. (2015). Improved initialisation of model-based clustering using Gaussian hierarchical partitions. Advances in Data Analysis and Classification, 9(4), 447.
https://doi.org/10.1007/s11634-015-0220-z DOI: https://doi.org/10.1007/s11634-015-0220-z
Suhaibah, A., Uznir, U., Rahman, A. A., Anton, F., Mioc, D., Estate, R., & Segmentation, M. (2016). 3D GEOMARKETING SEGMENTATION : A HIGHER SPATIAL DIMENSION PLANNING PERSPECTIVE, XLII(October), 3-5. https://doi.org/10.5194/isprs-archives-XLII-4-W1-1-2016
https://doi.org/10.5194/isprs-archives-XLII-4-W1-1-2016 DOI: https://doi.org/10.5194/isprs-archives-XLII-4-W1-1-2016
Ultsch, A. (2002). Emergent self-organising feature maps used for prediction and prevention of churn in mobile phone markets. Journal of Targeting, Measurement and Analysis for Marketing, 10(4), 314-324.
https://doi.org/10.1057/palgrave.jt.5740056 DOI: https://doi.org/10.1057/palgrave.jt.5740056
Vajda, S., Rangoni, Y., & Cecotti, H. (2015). Semi-automatic ground truth generation using unsupervised clustering and limited manual labeling: Application to handwritten character recognition. Pattern Recognition Letters, 58, 23-28.
https://doi.org/10.1016/j.patrec.2015.02.001 DOI: https://doi.org/10.1016/j.patrec.2015.02.001
Vera-Romero, O. E., & Vera-Romero, F. M. (2015). Evaluación del nivel socioeconómico: presentación de una escala adaptada en una población de Lambayeque. Rev. Cuerpo Méd. HNAAA, 6(1), 41-45.
Wang, H., & Zaniolo, C. (2000). CMP: a fast decision tree classifier using multivariate predictions. Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073). https://doi.org/10.1109/ICDE.2000.839444
https://doi.org/10.1109/ICDE.2000.839444 DOI: https://doi.org/10.1109/ICDE.2000.839444
Wedel, M., & Kamakura, W. A. (2012). Market Segmentation: Conceptual and Methodological Foundations. Springer Science & Business Media.
Winston, W. (2014). Marketing Analytics. Journal of Chemical Information and Modeling (Vol. 53). https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1017/CBO9781107415324.004 DOI: https://doi.org/10.1017/CBO9781107415324.004