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Abstract

This study evaluates the relationship between corruption and environmental indicators, 
specifically tree density and the Normalized Difference Vegetation Index (NDVI), in Mexico’s 
states. A Ridge Cross-Validation (RidgeCV) regression model was applied to mitigate 
multicollinearity and correct endogeneity. The dataset includes economic and environmental 
data from 32 states in Mexico. Results show that tree density is negatively correlated with 
economic activity, while NDVI has a marginally positive impact. These findings suggest that 
deforestation may be driven by economic and governance factors, highlighting the role of 
environmental degradation as a corruption proxy. This work contributes to institutional 
economics by providing empirical evidence for sustainable public policy design and enhancing 
corruption measurement through environmental indicators.
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1. Introduction

Corruption is a structural issue that weakens 
governance, distorts economic growth, and erodes 
public trust. Its negative impact on economic 
performance has been widely studied, yet challenges 
remain in establishing causality and generalizing 
findings across different institutional contexts. 
Mauro (1995) demonstrated that corruption 
discourages investment by increasing uncertainty 
and transaction costs, leading to slower capital 
formation and reduced economic expansion. 
Similarly, Tanzi and Davoodi (2000) highlighted how 
corruption inflates public spending on inefficient 
infrastructure projects, diverting resources from 
essential services like healthcare and education. 
These inefficiencies are particularly detrimental 
in developing economies, where institutional 
weaknesses exacerbate economic disparities (Gupta 
et al., 2000).

While corruption is generally viewed as an 
obstacle to economic development, some scholars 
propose an alternative perspective, commonly 
referred to as the “grease the wheels” hypothesis 
(Huntington, 1968; Leff, 1964). According to this 
argument, in highly regulated environments, 
corruption may facilitate economic transactions 
by bypassing bureaucratic inefficiencies. 
However, this view remains controversial, as 
more recent empirical studies suggest that any 
short-term efficiency gains are outweighed by the 
long-term institutional deterioration, reduced 
competitiveness, and deepening inequality caused 
by corruption (Dong & Torgler, 2020).

A growing body of research has begun to 
explore the relationship between corruption 
and environmental degradation, particularly 
deforestation. Weak institutional frameworks 
often allow illicit activities such as illegal 
logging, unauthorized land use, and regulatory 
circumvention to flourish, leading to environmental 
degradation as a direct consequence of corruption. 
Studies have linked governance failures to 
accelerated deforestation rates, with local officials’ 
incentives driving land exploitation in contexts of 
weak law enforcement (Burgess et al., 2012). Dell 
(2010) found that regions with poor governance 
tend to experience more severe environmental 

damage, highlighting the role of corruption in 
shaping ecological outcomes.

Mexico presents a particularly relevant case for 
examining these relationships. The country ranks 
consistently low on international corruption indices, 
such as Transparency International’s Corruption 
Perceptions Index and the World Bank’s Governance 
Indicators. Additionally, Mexico faces severe 
deforestation, with illegal logging contributing 
significantly to forest loss (FAO, 2020). These 
environmental issues are often tied to governance 
failures, as local authorities exploit regulatory 
loopholes for personal gain. Political clientelism and 
bribery have been linked to increased deforestation 
rates, particularly in states with high biodiversity 
and weak institutional oversight (Brondízio et 
al., 2021). Given these dynamics, environmental 
indicators such as tree density and the Normalized 
Difference Vegetation Index (NDVI) offer a 
promising alternative to traditional corruption 
measures, providing a more objective, spatially 
detailed approach to assessing governance failures.

This study investigates the relationship 
between corruption and economic growth in 
Mexico, employing environmental proxies—
specifically, NDVI and tree density—as instrumental 
variables to infer corruption levels. Unlike 
traditional studies that rely on perception-based 
indices, this approach utilizes satellite-derived 
data to capture the indirect effects of corruption 
on economic performance. By incorporating these 
proxies, the study addresses the measurement 
limitations commonly found in corruption research 
while offering new insights into the broader 
economic implications of governance failures.

A key methodological challenge in corruption-
growth studies is endogeneity, as corruption 
and economic activity influence each other 
simultaneously. To overcome this issue, this 
study applies a Ridge Cross-Validation 
(RidgeCV) regression model, which mitigates 
multicollinearity among environmental indicators 
and corruption proxies while ensuring robust 
coefficient estimates. The model is calibrated 
using economic and environmental data from 
Mexico’s 32 states, allowing for a comprehensive 
spatial analysis. This methodological approach 
enhances the reliability of the estimates and 
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strengthens the validity of environmental 
indicators as proxies for corruption.

The results reveal a complex interaction 
between corruption, environmental degradation, 
and economic growth. The findings indicate that tree 
density is negatively correlated with economic 
activity, suggesting that deforestation—often 
linked to governance failures—may temporarily 
boost economic performance in some regions. This 
supports the idea that corruption-driven resource 
exploitation can produce short-term economic 
gains at the expense of long-term sustainability. 
In contrast, NDVI exhibits a marginally positive 
effect on economic growth, implying that better 
environmental conditions may contribute to 
economic resilience. These results reinforce the 
need to integrate environmental governance into 
economic policymaking, as corruption-related 
deforestation poses long-term risks to sustainable 
development.

By demonstrating the viability of environmental 
indicators as proxies for corruption, this study 
contributes to institutional economics and policy 
research. The use of satellite-based data offers an 
innovative alternative to subjective corruption 
indices, improving the empirical assessment of 
governance quality. Additionally, the findings 
provide valuable insights for policymakers aiming 
to design sustainable development strategies that 
balance economic growth with environmental 
conservation. Understanding the intricate 
linkages between corruption, governance, and 
environmental degradation can aid in formulating 
more effective anti-corruption strategies while 
promoting economic resilience.

2. Materials and methods

2.1 Methodological frameworks

In studying the relationship between corruption 
and economic growth, addressing endogeneity is 
crucial due to the simultaneous interaction between 
these variables, which biases ordinary least squares 
(OLS) estimators. To mitigate this, instrumental 
variables (IVs) are employed to isolate exogenous 
variations in corruption that are uncorrelated with 
the error term in the growth equation.

Vegetation indices are used as IVs under 
two conditions: exogeneity and relevance. 
Environmental degradation, such as deforestation, 
correlates with corruption in contexts where 
governance is weak. For instance, Dell (2010) 
links historical exploitation to environmental 
damage in poorly governed areas, while Burgess 
et al. (2012) show how corruption drives 
deforestation through illegal logging. This study 
uses vegetation indices, such as the Normalized 
Difference Vegetation Index (NDVI) and tree 
density, as IVs to estimate corruption in Mexican 
states, as supported by prior literature.

For validity, these indices must reflect external 
environmental factors without being directly 
influenced by economic growth. While economic 
activity may affect land cover, NDVI and tree density 
isolate the exogenous effects of governance quality 
and environmental law enforcement. Actions such 
as illegal logging, often linked to corruption, alter 
vegetation indices independently of broader 
economic processes. Studies by Olken (2007) and 
Dell (2010) confirm the exogeneity of these indices 
in econometric models by associating them with 
governance and policy enforcement rather than 
direct economic performance.

High-resolution satellite images, analyzed using 
Python’s OpenCV library, allow for detailed local 
analyses, reducing subjectivity and bias associated 
with traditional corruption metrics.

2.2 Image Processing Methodology

This study utilized satellite imagery to analyze 
tree density and NDVI as proxies for corruption 
in Mexican states. High-resolution images were 
obtained from the SAS.Planet platform, utilizing 
Google Satellite and Bing Satellite services to 
evaluate forest cover. Image processing was carried 
out using the OpenCV library in Python.

•	 Data Collection: Up to 500 images per 
state were collected at a zoom resolution 
of 14, ensuring comprehensive territorial 
coverage.

•	 Timeframe: Images spanned two reference 
points—Bing Satellite images from 2021 
and Google Satellite images from 2023—
providing a robust basis for comparative 
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analysis, despite a 5–15% margin of error 
introduced by cloud cover.

•	 Image Processing Steps: Images were 
converted to grayscale, smoothed, and 
processed using the Canny algorithm for 
edge detection, enhancing tree contour 
visibility.

2.3 Calculation of Tree Density

The calculation of tree density involved 
summing the detected tree contours in each image, 
providing the total number of trees in each study 
area. The study area in square meters was quantified 
using the cv2.contourArea() function. Tree density 
was determined by dividing the total number of 
detected trees by the total study area for each state 
using the formula:

A detailed comparative analysis of tree density 
by state between 2021 and 2023 was subsequently 
performed, showing that the national density per 
square meter decreased by 10% over these two 
years. The situation was not uniform across states; 
some, like Baja California, Durango, Chihuahua, and 
Quintana Roo, managed to increase their density, 
although only Baja California showed a significant 
increase exceeding 5%.

Table 1. Comparison of Tree Density in 2021 and 2023 by State

State
Density 

2021
Density 

2023
Var (%)

Aguascalientes 8.2457 6.8562 -16.9%

Baja California 5.0251 5.5610 10.7%

Baja California Sur 4.0620 3.0537 -24.8%

Campeche 3.3624 3.1001 -7.8%

Coahuila de 
Zaragoza

3.1977 2.4336 -23.9%

Colima 4.4537 2.8312 -36.4%

Chiapas 2.6991 2.6865 -0.5%

Chihuahua 6.3107 6.5838 4.3%

Mexico City 8.4206 7.8668 -6.6%

Durango 6.6240 6.9225 4.5%

Guanajuato 5.5866 4.8606 -13.0%

State
Density 

2021
Density 

2023
Var (%)

Guerrero 3.9341 3.9226 -0.3%

Hidalgo 6.5421 6.4376 -1.6%

Jalisco 5.5234 4.2844 -22.4%

Mexico State 6.3580 6.2963 -1.0%

Michoacán 4.5176 3.2451 -28.2%

Morelos 5.4137 3.9659 -26.7%

Nayarit 5.2565 5.2229 -0.6%

Nuevo León 5.5121 5.0102 -9.1%

Oaxaca 4.1033 4.0352 -1.7%

Puebla 6.7416 6.0398 -10.4%

Querétaro 5.7349 5.0604 -11.8%

Quintana Roo 1.9971 2.0503 2.7%

San Luis Potosí 4.2432 3.8308 -9.7%

Sinaloa 3.4461 3.2900 -4.5%

Sonora 4.7469 2.6100 -45.0%

Tabasco 2.0385 1.6723 -18.0%

Tamaulipas 2.7919 2.1844 -21.8%

Tlaxcala 7.0515 5.9594 -15.5%

Veracruz 2.4453 1.9268 -21.2%

Yucatán 2.0190 1.0424 -48.4%

Zacatecas 5.8656 5.8980 0.6%

Country 4.5896 4.1301 -10.0%

Source: Authors’ own work with data from satellite images of 
Google and Bing.

The results in Table 1 show a general decrease 
in national tree density by 10% between 2021 and 
2023. However, some states, such as Baja California, 
Durango, Chihuahua, and Quintana Roo, managed 
to increase their tree density, with Baja California 
standing out with an increase of 10.7%. On the 
other hand, Yucatán experienced a significant 
decrease of 48.4%, which could be related to 
specific economic or environmental activities in the 
region. These variations highlight the importance 
of considering regional and temporal factors when 
analyzing the relationship between tree density 
and economic growth.

These variations highlight the importance of 
considering regional and temporal factors when 
analyzing the relationship between tree density and 
economic growth.
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2.4 Calculation of NDVI

The same satellite images used for the tree 
density analysis were employed to calculate NDVI 
for 2021 and 2023, following these steps:

•	 Image Acquisition: Images were obtained 
from SAS.Planet, accessing Google and Bing 
Satellite services.

•	 Image Processing:

	» Resized to 500x500 pixels for 
consistency.

	» The red (RED) and near-infrared (NIR) 
bands were extracted from each image. 

The red band corresponds to channel 
2 and the NIR band to channel 1 of the 
RGB images.

•	 NDVI Calculation: Using the standard 
formula:

Where NIR is the near-infrared band and Red is 
the red band of the image. Figure 1 shows examples 
of NDVI calculations for Aguascalientes and Baja 
California.

Figure 1. Examples of Average NDVI for Aguascalientes and Baja California

 

Source: Authors’ own work with data from satellite images from Google and Bing.

NDVI and TreeDensity meet the criteria of 
exogeneity and relevance as instrumental variables 
for corruption. TreeDensity reflects deforestation 
and forest degradation, often linked to illegal logging 
in regions with weak enforcement of environmental 
laws (Burgess et al., 2012). Similarly, NDVI signals 
vegetation health and land use changes tied to 
corrupt activities, such as illegal land permits or 
regulatory evasion (Dell, 2010; Olken, 2007). Olken 
(2007) demonstrated that satellite data in Indonesia 
revealed higher corruption in areas with severe 
environmental degradation. These indicators help 
isolate the exogenous component of corruption, 

ensuring robust analyses of its impact on economic 
growth.

In Mexico, the General Law of Sustainable 
Forest Development (LGDFS) regulates logging 
and deforestation under SEMARNAT and 
PROFEPA (SEMARNAT, 2020). Enforcement varies 
significantly across states, with weaker institutional 
capacity increasing vulnerability to illegal logging 
and corrupt practices (World Bank, 2022). Where 
oversight is limited, bribery-driven deforestation 
exacerbates environmental damage (Transparency 
International, 2023). This study assumes that 
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weaker law enforcement fosters corruption-fueled 
deforestation, justifying the use of TreeDensity and 
NDVI to differentiate between legal and corrupt 
activities.

2.5 Econometric Model

This study applies to the RidgeCV econometric 
model to address multicollinearity and enhance 
estimation accuracy. This approach is particularly 
effective in cases where explanatory variables, such 
as Tree Density and NDVI, exhibit high correlations. 
To optimize the model, cross-validation was 
employed, enabling the determination of the optimal 
regularization parameter (alpha) by minimizing the 
mean squared error (MSE).

Model Variables

The variables used in the RidgeCV model are 
as follows:

•	 ITAEE: The Quarterly Indicator of State 
Economic Activity, calculated by INEGI, 
serves as the dependent variable. 
Expressed as an index based on 2018=100, 
ITAEE captures short-term economic 
performance at the state level, aggregating 
data from agriculture, industry, and 
services. This index enables comparison 
of economic activity across states and 
provides insights into regional economic 
dynamics in Mexico.

•	 TreeDensity: These variable measures 
forest cover and reflects environmental 
degradation often associated with 
corruption. Studies like Burgess et al. 
(2012) demonstrate that corruption 
accelerates deforestation, negatively 
impacting economic development. By 
capturing variations in forest density, this 
indicator links environmental corruption 
to regional economic disparities.

•	 log_UCORR: Derived from the National 
Survey of Quality and Government Impact 
(ENCIG) by INEGI, this variable represents 
the logarithmic transformation of the 
percentage of users reporting corruption. 
The log transformation normalizes the data, 
reducing skewness and capturing the non-

linear relationship between corruption and 
economic growth. UCORR encompasses 
various corruption-related crimes, such as 
bribery and embezzlement, reflecting both 
public perception and direct experiences 
with corruption across Mexico’s states. This 
broad coverage makes it a robust proxy for 
analyzing corruption’s impact on economic 
performance.

•	 NDVI: The Normalized Difference 
Vegetation Index, obtained from satellite 
imagery, measures vegetation health and 
density. It captures the indirect effects 
of environmental quality on economic 
growth, linking vegetation conditions to 
agricultural productivity and broader 
economic outcomes. Pettorelli et al. 
(2005) validate NDVI as a reliable 
ecological indicator, making it essential for 
understanding how environmental factors 
influence economic systems.

The formulation of the Ridge regression model 
is as follows:

Where:

•	 y is the vector of the dependent variable 
(ITAEE).

•	 X is the matrix of independent variables 
(Tree Density, log_UCORR, NDVI)

•	 β are the coefficients to be estimated.

•	 ϵ is the error term.

In addition to its ability to regulate the 
magnitude of coefficients, RidgeCV is based on a cost 
function that not only minimizes the mean squared 
error but also penalizes large coefficients to reduce 
variance and prevent overfitting, as shown in the 
following equation.

Where:
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•	 α is the regularization parameter that 
controls the penalty applied to the 
coefficients.

•	  is the mean squared error 
term.

•	  is the regularization term that 
penalizes large coefficients to reduce 
variance.

This approach ensures that the estimates 
obtained are robust and less sensitive to the 
correlation between variables, allowing for a better 
balance between model fit and predictive capacity. 
The parameter α was adjusted to 3.56 through cross-
validation, optimizing the model to minimize the 
mean squared error (MSE).

Initially, socioeconomic indicators like Moderate 
Poverty, Extreme Poverty, and population density 
were considered as control variables due to their 
potential impact on ITAEE. However, their inclusion 
introduced multicollinearity with environmental 
variables (TreeDensity and log_UCORR) and did not 
significantly improve the model’s fit. To maintain 
parsimony and robustness, these variables were 
excluded, focusing instead on environmental and 
corruption indicators, which proved more relevant 
for explaining variations in economic growth across 
Mexico’s states.

The RidgeCV model effectively mitigated 
multicollinearity between TreeDensity and NDVI 
through regularization, ensuring robust estimates 
for both indicators without inflating their variance.

The validity of NDVI and TreeDensity as 
instrumental variables is supported by their 
correlation with governance quality and their 
independence from direct economic drivers (Olken, 
2007; Burgess et al., 2012). These metrics capture 
dimensions of corruption tied to environmental 
malpractices, such as illegal deforestation and 
unregulated land use. By leveraging high-resolution 
satellite data, this approach ensures robust 
inference and minimizes biases associated with 
traditional corruption metrics.

2.6 Robustness and Diagnostic Tests

Several diagnostic tests were performed to 
ensure the robustness of the model:

1.	 Multicollinearity: The Variance Inflation 
Factor (VIF) confirmed that the variables 
did not exhibit excessive multicollinearity.

2.	 Heteroscedasticity: The Breusch-Pagan 
test indicated no significant evidence of 
heteroscedasticity (LM Statistic: 4.63, 
p-value: 0.20).

3.	 Autocorrelation: The Durbin-Watson 
statistic (1.54) suggested slight positive 
autocorrelation, within acceptable limits.

4.	 Cross-Validation: A 5-fold cross-validation 
showed consistent model performance 
across samples, with MSE values of 71.97 
and 46.25 for the first and second periods, 
respectively.

5.	 Sensitivity Analysis: Testing different α 
values confirmed that 35.56 minimized 
MSE, aligning with the model’s focus on 
balancing fit and regularization.

2.7 Alternative Models

To ensure the robustness of the results and 
validate the choice of the RidgeCV model, various 
alternative econometric models were evaluated, 
including LASSO and Elastic Net. The comparison of 
these models was carried out using fit criteria such 
as the mean squared error (MSE) and the coefficient 
of determination (R²). The comparative results are 
detailed below:

RidgeCV: MSE of 149.28; R² = 0.0242; Alpha 
= 35.56

LASSO: MSE of 156.38; R² = -0.0223; Alpha = 
100.0

Elastic Net: MSE of 156.38; R² = -0.0223; Alpha 
= 100.0

The results show that the RidgeCV model offered 
the best balance between fit and regularization, 
presenting the lowest mean squared error and a 
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positive coefficient of determination (R²). Both 
LASSO and Elastic Net resulted in higher MSEs and 
negative R² values, indicating that these models did 
not capture the relationship between the variables 
effectively. Additionally, LASSO and Elastic Net 
reduced the coefficients of key variables such as 
TreeDensity, log_UCORR, and NDVI to zero, further 
demonstrating their limitations in this context.

In contrast, RidgeCV maintained significant 
coefficients for TreeDensity (-0.4694), log_UCORR 
(0.8074), and NDVI (0.0165), showing its ability 
to handle multicollinearity without eliminating 
important variables. This comparative analysis 
reinforces the choice of the RidgeCV model for 
the study, highlighting its capacity to manage 
multicollinearity and provide more accurate 
and robust estimates in the context of economic 
growth and environmental factors across the 
states of Mexico.

3. Results and discussion

The RidgeCV model was used to predict the 
effects of corruption on state-level economic 
growth. The following results were obtained from 
the final model.

Table 2. RidgeCV Model Results

Metric Value

Average RidgeCV MSE 149.28

Optimal Alpha 35.56

RidgeCV Model Coefficients

Tree Density -0.469418

log_UCORR 0.807358

NDVI 0.016450

Source: Authors’ own work with model results in Jupyter 
Notebook

The average cross-validation MSE for the 
RidgeCV model was149.28, showing that the model 
behaves consistently across different samples. The 
Breusch-Pagan test showed no significant evidence 
of heteroscedasticity, and the Durbin-Watson test 
indicated slight positive autocorrelation, but within 
acceptable limits.

3.1. Interpretation of Results

The RidgeCV model demonstrated a significant 
improvement in prediction accuracy compared to 
alternative models, offering valuable insights into 
the relationship between corruption, environmental 
factors, and economic growth. Cross-validation 
identified an optimal alpha of 35.56, minimizing 
the mean squared error and effectively managing 
multicollinearity.

Tree Density: The negative coefficient for 
TreeDensity (-0.469418) highlights that higher 
forest cover correlates with decreased ITAEE, 
reflecting the economic disparity between rural and 
urban regions. Rural areas with dense forests often 
depend on agriculture and conservation activities, 
which generate lower economic output compared 
to industrialized regions. This result also suggests 
that deforestation driven by corrupt practices may 
temporarily boost economic activity in resource 
extraction sectors, ultimately undermining long-
term sustainability.

log_UCORR: The positive coefficient for log_
UCORR (0.807358) suggests that in certain contexts, 
corruption may “grease the wheels” of economic 
activity by circumventing inefficient regulations. 
While this challenges the conventional view of 
corruption as purely harmful, it highlights its dual 
role in regions with weak institutions. Corruption 
can facilitate short-term transactions but ultimately 
hinders equitable and sustainable growth in the 
long run.

NDVI: NDVI’s small positive coefficient 
(0.016450) links vegetation health with increased 
ITAEE, indicating that environmental quality 
indirectly supports economic activity through 
improved agricultural productivity and ecological 
stability. Although modest, this finding underscores 
the importance of environmental health in fostering 
economic resilience.

The results validate the use of TreeDensity 
as a proxy for corruption, revealing its indirect 
impact on state-level economic growth. The 
negative correlation between tree density and 
ITAEE suggests that areas with higher forest 
cover, often rural, face governance challenges that 
limit economic opportunities. The relationship 
between NDVI and ITAEE further demonstrates the 
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critical role of environmental health in sustainable 
economic outcomes, where corruption-driven 
deforestation undermines ecological resilience 
and long-term growth.

3.2 Implications of the Results

These results highlight the complexity of the 
relationships between environmental and economic 

factors in Mexico. The negative relationship between 
tree density and ITAEE suggests that regions with 
higher tree cover—often rural—have lower levels of 
economic activity as measured by ITAEE. However, 
the low correlation (R² = 0.0555) indicates that this 
relationship is weak and that other factors may be 
significantly influencing economic activity, as shown 
in Figure 2.

Figure 2. Comparison of Economic Growth and Tree Density

Source: Authors’ own work with data from INEGI and satellite images from Google and Bing.

Similarly, the positive relationship of NDVI 
suggests that healthier and more abundant 
vegetation is associated with greater economic 
development in certain states. However, the 
correlation remains weak, emphasizing the need 
to consider other contextual and socioeconomic 
factors for a more accurate interpretation.

The small positive coefficient for UCORR with 
ITAEE raises interesting questions about the 

dynamics of corruption and economic growth. While 
corruption is generally perceived as detrimental to 
development, this result suggests that there may 
be compensatory mechanisms that mitigate the 
negative impact in some contexts. Alternatively, it 
could reflect the limitations of the corruption index 
in fully capturing the complexity of corruption’s 
effects on economic activity, given an R² of 0.0022, 
as illustrated in Figure 3.
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Figure 3. Comparison of Economic Growth and Corruption

Source: Authors’ own work with data from INEGI

The results validate the use of Tree Density as a 
proxy for corruption, revealing its indirect impact 
on state-level economic growth. The negative 
correlation between tree density and ITAEE suggests 
that areas with higher forest cover face economic 
disadvantages linked to governance challenges. 
Additionally, the relationship between NDVI and 
ITAEE highlights the critical role of environmental 
health in fostering sustainable economic outcomes, 
demonstrating that corruption-driven deforestation 
undermines both ecological resilience and long-
term economic stability.

These findings align with prior research 
by Burgess et al. (2012) on corruption and 
deforestation, and Dell (2010) on weak governance, 
illustrating how corruption mediates the interaction 
between environmental degradation and economic 
outcomes in Mexico. This work provides empirical 
evidence for policymakers to design strategies that 
balance economic growth with environmental 
sustainability, particularly in contexts where 
weak institutions exacerbate corruption and 
environmental harm.

3.3 Detailed Results by State

The following are the detailed results of the 
RidgeCV model for each state, highlighting how 
each variable affects ITAEE in each federal entity:

Table 3. RidgeCV Model Results by State

State
ITAEE 
2021

ITAEE 
2023

Model 
Prediction

Aguascalientes 8.24 6.86 7.34

Baja California 5.03 5.56 5.22

Baja California Sur 4.06 3.05 3.25

Campeche 3.36 3.10 3.08

Coahuila de Zaragoza 3.20 2.43 2.51

Colima 4.45 2.83 3.12

Chiapas 2.70 2.69 2.85

Chihuahua 6.31 6.58 6.34

Mexico City 8.42 7.87 8.02

Durango 6.62 6.92 6.77

Guanajuato 5.59 4.86 4.98

Guerrero 3.93 3.92 3.89

Hidalgo 6.54 6.44 6.50

Jalisco 5.52 4.28 4.52

Mexico 6.36 6.30 6.38

Michoacán de Ocampo 4.52 3.25 3.32

Morelos 5.41 3.97 4.05

Nayarit 5.26 5.22 5.15

Nuevo León 5.51 5.01 5.02

Oaxaca 4.10 4.04 4.06

Puebla 6.74 6.04 6.08

Querétaro 5.73 5.06 5.12



33

A
R

T
ÍC

U
L

O
S

ABRIL YURIKO HERRERA RÍOS, IRVIN MIKHAIL SOTO ZAZUETA

Revista Perspectiva Empresarial, Vol. 12, No. 1, enero-junio de 2025, 24-37
E-ISSN 2389-8194

State
ITAEE 
2021

ITAEE 
2023

Model 
Prediction

Quintana Roo 2.00 2.05 2.12

San Luis Potosí 4.24 3.83 3.90

Sinaloa 3.45 3.29 3.34

Sonora 4.75 2.61 2.75

Tabasco 2.04 1.67 1.71

Tamaulipas 2.79 2.18 2.25

Tlaxcala 7.05 5.96 5.98

Veracruz de Ignacio 2.45 1.93 1.98

Yucatán 2.02 1.04 1.12

Zacatecas 5.87 5.90 5.85

Source: Authors’ own work with data from the RidgeCV model

Table 3 presents the RidgeCV model predictions 
compared to the actual ITAEE values for the years 
2021 and 2023 in each state. These results allow 
us to observe how the independent variables (tree 
density, UCORR, NDVI) affect ITAEE in different 
states. To illustrate these findings, representative 
states showing different trends in their results were 
chosen:

In Aguascalientes, the model’s prediction shows 
a decrease in economic activity, although not as 
pronounced as observed. The decrease in ITAEE 
in Aguascalientes could be influenced by a reduction 
in tree density, highlighting how tree cover can affect 
the regional economy.

Baja California showed an increase in ITAEE 
that the model also predicts to a lesser extent. This 
increase could be associated with the observed 
increase in tree density in the state, suggesting that, 
in some cases, greater tree cover could be linked to 
improved economic activity.

In Mexico City, the model’s prediction aligns 
quite well with reality, suggesting that tree 
density and other environmental factors have 
a limited impact on this highly urbanized entity. 
This reinforces the idea that urban dynamics can 
significantly differ from rural ones in terms of how 
environmental factors influence the economy.

Yucatán experienced a significant decrease 
in ITAEE, which the model correctly predicts. The 
drastic reduction in tree density in Yucatán may 
be an important factor in this economic decline, 
underscoring the importance of tree cover for 
economic activity in certain states.These examples 
illustrate how the RidgeCV model can capture 
regional and temporal variations in the relationship 
between environmental factors and economic 
growth, providing a valuable tool for analysis and 
policy formulation.

3.4 Visual Analysis of Economic and 
Corruption Trends

The maps in Figure 4 illustrate the evolution of 
the Quarterly Indicator of State Economic Activity 
(ITAEE) between 2021 and 2023 and the number of 
users who experienced corruption during the same 
period. This visual representation provides valuable 
insights into the spatial distribution of economic 
activity and corruption across Mexican states.



34

A
R

T
ÍC

U
L

O
S

 O
R

IG
IN

A
L

E
S

ABRIL YURIKO HERRERA RÍOS, IRVIN MIKHAIL SOTO ZAZUETA

Revista Perspectiva Empresarial, Vol. 12, No. 1, enero-junio de 2025, 24-37
E-ISSN 2389-8194

Figure 4. Maps of ITAEE Evolution and Users Experiencing Corruption

 

Source: Authors’ own work with data from INEGI (2023) and Bing technology

A clear regional pattern emerges in the ITAEE 
evolution maps. The states in the northern and 
central regions show relatively higher economic 
activity compared to those in the southern region, 
which aligns with national trends indicating 
industrial growth and stronger institutional 
capacity in the north. For instance, Baja California, 
Chihuahua, and Nuevo León experienced a notable 
increase in ITAEE from 2021 to 2023, reflecting 
ongoing industrial development and infrastructure 
investments. In contrast, states like Chiapas, Oaxaca, 
and Guerrero show minimal growth, underscoring 
persistent structural challenges in these regions.

The correlation between economic 
performance and corruption perception 
also reveals interesting dynamics. The Users 
Experienced Corruption maps suggest a reduction 
in reported corruption in some states, yet others, 
such as Mexico City and Veracruz, continue to 
report high levels. This aligns with prior research 
that highlights urban areas as more prone to 

corruption-related incidents due to the higher 
concentration of public services and administrative 
processes.

The spatial comparison underscores the 
complex interaction between governance quality, 
economic performance, and environmental factors. 
For instance:

•	 States with lower ITAEE growth and high 
corruption perception (e.g., Veracruz and 
Tabasco) reflect governance challenges that 
may impede economic development and 
increase vulnerability to corruption.

•	 States with moderate economic growth 
and lower corruption perception (e.g., 
Querétaro and Aguascalientes) highlight 
areas with potentially stronger institutional 
frameworks that foster sustainable growth.
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•	 Highly urbanized entities like Mexico 
City exhibit unique patterns, where high 
corruption perception may coexist with 
resilient economic performance due to 
the diversified nature of the local economy.

These results reinforce the importance of 
tailored governance strategies. Policies should 
focus on strengthening institutional capacity in the 
southern states while promoting transparency and 
accountability in highly urbanized areas. Integrating 
environmental and economic monitoring into 
governance frameworks can provide early warnings 
of corruption and help mitigate its impact on long-
term development.

4. Conclusion

This study analyzed the relationship between 
corruption, environmental factors, and economic 
growth in Mexico, emphasizing the role of 
environmental indicators as instrumental variables 
to address endogeneity. The results provide robust 
evidence that tree density and NDVI are valid proxies 
for governance quality, offering important insights 
for understanding how corruption influences 
regional economic performance.

The negative coefficient for tree density 
reflects the economic challenges often associated 
with rural areas characterized by higher forest 
cover. This pattern should be interpreted as a call 
for policies that promote sustainable economic 
diversification, rather than reducing forest cover 
to boost short-term growth. Strategies focused 
on reforestation, sustainable forestry, and 
ecotourism can create employment opportunities 
and contribute to regional development while 
preserving environmental resources. Payment for 
Environmental Services (PES) schemes, which offer 
financial incentives to landowners for maintaining 
forest cover, could further enhance these efforts.

NDVI’s positive association with economic 
activity highlights the significance of sustainable 
agricultural practices. Promoting agroforestry 
and environmentally friendly farming techniques 
not only improves vegetation health but also 
strengthens local economies. Such initiatives can 

enhance resilience to climate change, increase 
agricultural productivity, and foster long-term 
economic stability in rural regions.

The findings on corruption reveal its complex 
role in economic dynamics. Although log_UCORR’s 
positive coefficient suggests that corruption may 
occasionally bypass bureaucratic inefficiencies, 
it remains a significant obstacle to institutional 
development and equity. Anti-corruption policies 
should focus on increasing transparency and 
accountability, with digital solutions such as 
e-Government platforms playing a critical role 
in reducing opportunities for corrupt practices. 
Successful international experiences, such as 
Estonia’s comprehensive digitization of public 
services, offer valuable lessons for Mexico in this 
regard.

Environmental education and public awareness 
campaigns are equally essential. Incorporating 
sustainability into educational programs and 
launching initiatives to promote environmental 
stewardship among communities can build long-
term support for conservation efforts. Policies 
aimed at integrating environmental education at 
various levels could strengthen collective efforts to 
protect natural resources and promote responsible 
development.

The RidgeCV model proved effective in 
addressing multicollinearity and improving the 
accuracy of the estimates, allowing for a more 
precise understanding of the relationship between 
economic activity, governance, and environmental 
factors. These results contribute to the growing 
literature on corruption and economic growth by 
introducing a novel methodological approach that 
incorporates satellite data and geospatial analysis 
into econometric modeling.

While this research provides valuable insights, 
there are opportunities for further exploration. 
Future studies could incorporate additional 
indicators, such as water availability, pollution 
levels, or governance quality at the municipal level, 
to enrich the understanding of regional economic 
dynamics. The integration of political factors, such 
as election cycles or local political stability, could 
also offer a more comprehensive perspective on how 
corruption interacts with economic performance.
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The evidence presented underscores the 
importance of designing policies that simultaneously 
promote transparency, strengthen institutional 
frameworks, and encourage environmental 
conservation. Balancing these priorities will be 
essential for fostering sustainable economic growth 
and improving governance in the states of Mexico.

References

Acemoglu, D., & Robinson, J. A. (2012). Why nations 
fail: The origins of power, prosperity, and poverty. 
Random House.

Bakhsh, S., & Ahmed, V. (2022). Environmental 
degradation, corruption, and economic growth: 
Evidence from Asian economies. Environmental 
Science and Pollution Research, 29, 32687–32704.

Brondízio, E. S., Aumeeruddy-Thomas, Y., Bates, P., 
Carino, J., Fernández-Llamazares, Á., Ferrari, M. F., 
& Shrestha, U. B. (2021). Locally based, regionally 
manifested, and globally relevant: Indigenous and 
local knowledge, values, and practices for nature. 
Annual Review of Environment and Resources, 
46(1), 481–509.

Buehn, A., & Lessmann, C. (2021). Fiscal decentralization 
and corruption: New evidence from broad panel 
data. Kyklos, 74(4), 578–604.

Burgess, R., Hansen, M., Olken, B. A., Potapov, P., & Sieber, 
S. (2012). The political economy of deforestation 
in the tropics. The Quarterly Journal of Economics, 
127(4), 1707–1754.

Burki, S. J., & Perry, G. E. (1998). Beyond the Washington 
consensus: Institutions matter. World Bank 
Publications.

Chazdon, R. L. (2008). Restoring forests and ecosystem 
services on degraded lands. Science, 320(5882), 
1458–1460.

D’Agostino, G., Dunne, J. P., & Pieroni, L. (2016). 
Government spending, corruption and economic 
growth. World Development, 84, 190–205.

Dell, M. (2010). The persistent effects of Peru’s mining 
mita. Econometrica, 78(6), 1863–1903.

Dong, B., & Torgler, B. (2020). Corruption and social 
trust: The mediating role of institutional quality 

and the moderating role of income inequality. 
European Journal of Political Economy, 63, 101882.

Drury, A. C., Kieckhaus, D., & Lusztig, M. (2006). Corruption, 
democracy, and economic growth. International 
Political Science Review, 27(2), 121–136.

Food and Agriculture Organization of the United Nations 
(FAO). (2020). The state of the world’s forests 2020: 
Forests, biodiversity, and people. FAO.

Gründler, K., & Potrafke, N. (2019). Corruption and 
economic growth: New empirical evidence. 
European Journal of Political Economy, 60, 101–115.

Gupta, S., Davoodi, H., & Alonso-Terme, R. (1998). Does 
corruption affect income inequality and poverty? 
IMF Working Paper No. 98/76. International 
Monetary Fund.

Huntington, S. P. (1968). Political order in changing 
societies. Yale University Press.

INEGI. (2023). Encuesta Nacional de Calidad e Impacto 
Gubernamental (ENCIG). Instituto Nacional de 
Estadística y Geografía. https://www.inegi.org.
mx/programas/encig/2023/

Kudamatsu, M., Persson, T., & Stroebel, J. (2012). 
Weather and infant mortality in Africa. American 
Economic Review, 102(4), 1915–1948.

Leff, N. H. (1964). Economic development through 
bureaucratic corruption. American Behavioral 
Scientist, 8(3), 8–14.

Mauro, P. (1995). Corruption and growth. The Quarterly 
Journal of Economics, 110(3), 681–712.

Mbow, C., Smith, P., Skole, D., Duguma, L., & Bustamante, 
M. (2014). Achieving mitigation and adaptation to 
climate change through sustainable agroforestry 
practices in Africa. Current Opinion in Environmental 
Sustainability, 6, 8–14.

Meón, P. G., & Weill, L. (2010). Is corruption an efficient 
grease? World Development, 38(3), 244–259.

Monroe, M. C. (2003). Two avenues for encouraging 
conservation behaviors. Human Ecology Review, 
10(2), 113–125.

Olken, B. A. (2007). Monitoring corruption: Evidence 
from a field experiment in Indonesia. Journal of 
Political Economy, 115(2), 200–249.

https://www.inegi.org.mx/programas/encig/2023/
https://www.inegi.org.mx/programas/encig/2023/


37

A
R

T
ÍC

U
L

O
S

ABRIL YURIKO HERRERA RÍOS, IRVIN MIKHAIL SOTO ZAZUETA

Revista Perspectiva Empresarial, Vol. 12, No. 1, enero-junio de 2025, 24-37
E-ISSN 2389-8194

Paldam, M. (2002). The cross-country pattern of 
corruption: Economics, culture and the seesaw 
dynamics. European Journal of Political Economy, 
18(2), 215–240.

Pagiola, S. (2008). Payments for environmental services 
in Costa Rica. Ecological Economics, 65(4), 712–724.

Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J. M., 
Tucker, C. J., & Stenseth, N. C. (2005). Using 
the satellite-derived NDVI to assess ecological 
responses to environmental change. Trends in 
Ecology & Evolution, 20(9), 503–510.

Rose-Ackerman, S. (1975). The economics of corruption. 
Journal of Public Economics, 4(2), 187–203.

Secretaría de Medio Ambiente y Recursos Naturales 
(SEMARNAT). (2020). Ley General de Desarrollo 
Forestal Sustentable. https://www.gob.mx/
semarnat/documentos/ley-general-de-desarrollo-
forestal-sustentable

Stavins, R. N. (2000). Market-based environmental 
policies. Public Economics Review, 12(2), 243–265.

Transparency International. (2020). What is corruption? 
https://www.transparency.org/en/what-is-
corruption

Transparency International. (2023). Corruption 
perceptions index 2023. https://www.transparency.
org/en/cpi/2023/

Voskanyan, F. (2000). A study of the effects of corruption 
on economic and political development. Centre 
for Strategic and International Studies. https://
csis.org/publication/study-effects-corruption-
economic-and-political-development

Lember, V., Kalvet, T., & Kattel, R. (2014). Public sector 
innovation: Case studies and research perspectives. 
Public Management Review, 16(1), 23–30.

Millan-Lopez, A. J. (2024). Corrupción institucional 
observada desde el espacio. Sobre México Temas de 
Economía, 9(1), 55–82.

World Bank. (2022). Worldwide governance indicators. 
https://info.worldbank.org/governance/wgi/

Zhang, J., & Daly, K. (2021). Corruption, innovation and 
economic growth: Evidence from emerging and 
developing countries. Economic Systems, 45(4), 
100888.

https://www.gob.mx/semarnat/documentos/ley-general-de-desarrollo-forestal-sustentable
https://www.gob.mx/semarnat/documentos/ley-general-de-desarrollo-forestal-sustentable
https://www.gob.mx/semarnat/documentos/ley-general-de-desarrollo-forestal-sustentable
https://www.transparency.org/en/what-is-corruption
https://www.transparency.org/en/what-is-corruption
https://www.transparency.org/en/cpi/2023/
https://www.transparency.org/en/cpi/2023/
https://csis.org/publication/study-effects-corruption-economic-and-political-development
https://csis.org/publication/study-effects-corruption-economic-and-political-development
https://csis.org/publication/study-effects-corruption-economic-and-political-development
https://info.worldbank.org/governance/wgi/

	_Hlk169517837

