42
ARTÍCULOS ORIGINALES
NIDIA RODRÍGUEZ MAZAHUA, LISBETH RODRÍGUEZ MAZAHUA, ASDRÚBAL LÓPEZ CHAU, GINER ALOR HERNÁNDEZ
Revista Perspectiva Empresarial, Vol. 7, No. 2-1, julio-diciembre de 2020, 31-43
ISSN 2389-8186, E-ISSN 2389-8194
References
Barkhordari, M. and Niamanesh, M. (2018). Chabok:
A Map-Reduce based method to solve data
warehouse problems. Journal of Big Data, 5(40),
1-25.
Barr, M., Boukhalfa, K. and Bouibede, K. (2018). Bi-
Objective Optimization Method for Horizontal
Fragmentation Problem in Relational Data
Warehouses as a Linear Programming Problem.
, 32(9-10), 907-923.
Boissier, M. and Kurzynski, D. (2018). Workload-
Driven Horizontal Partitioning and Pruning for
Large HTAP Systems. In IEEE 34
th
International
Conference on Data Engineering Workshops
(ICDEW), Paris, France.
Costa, M.R. et al. (2016). Spatial data warehouses and
spatial OLAP come towards the cloud: Design
and performance. Distributed and Parallel
Databases, 34(3), 425-461.
Dean, J. (2014).
Learning Value Creation for Business Leaders and
. New Jersey, USA: John Wiley & Sons.
Incremental and Automatic Data Warehouses
Fragmentation.
,
8(6), 1-10.
Han, J., Kamber, M. and Pei, J. (2012). Data Mining
. Burlington, USA:
Morgan Kaufmann Publishers.
Hilprecht, B., Carsten, B. and Uwe, R. (2019). Learning
Learning. Recovered from https://arxiv.org/
pdf/1904.01279.pdf.
Hulten, G., Spencer, L. and Domingos, P. (2001).
Mining time-changing data streams. In
Proceedings of the Seventh ACM SIGKDD
International Conference on Knowledge
Discovery and Data Mining.
Kechar, M. and Nait-Bahloul, S. (2019). Bringing
Together Physical Design and Fast Querying
of Large Data Warehouses: A New Data
Partitioning Strategy. In BDIoT’19: Proceedings
of the 4
th
International Conference on Big Data
and Internet of Things, Rabat, Morocco.
Kotsiantis, S., Tsekouras, G. and Pintelas, P. (2005).
Local Bagging of Decision Stumps. In Ali, M.
and Esposito, F. (Eds.),
(pp. 377-391). Berlin,
Germany: Springer.
Landwehr, N., Hall, M. and Frank, E. (2005). Logistic
Model Trees. , 59(1-2), 161-205.
Letrache, K., El Beggar, O. and Ramdani, M. (2019).
OLAP cube partitioning based on association
rules method. , 49(2), 420-
434.
Louppe, G. (2015).
. Liège, Belgium:
Universidad of Liège.
Nam, Y.-M., Kim, M.-S. and Han, D. (2018). A Graph-
Based Database Partitioning Method for
Parallel OLAP Query Processing. In IEEE 34
th
International Conference on Data Engineering
(ICDE), Paris, France.
Ozsu, M.T. and Valduriez, P. (2020).
. Geneva,
Switzerland: Springer Nature Switzerland AG.
Ramdane, Y. et al. (2019). SDWP: A New Data
Placement Strategy for Distributed Big Data
Warehouses in Hadoop. In Ordonez, C. et
al. (Eds.),
(pp. 189-205). Berlin, Germany:
Springer.
Ramdane, Y. et al. (2019). SkipSJoin: A New Physical
Design for Distributed Big Data Warehouses
in Hadoop. In Laender, A.H.F. et al. (Eds.),
(pp. 255-263). Berlin,
Germany: Springer.
Rodríguez, L. et al. (2014). Horizontal Partitioning
of Multimedia Databases Using Hierarchical
Agglomerative Clustering. In Gelbukh, A.
et al. (Eds.),
(pp. 296-309). Cham,
Switzerland: Springer.