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ABSTRACT  One of the main problems faced by Data Warehouse designers is fragmentation. 
Several studies have proposed data mining-based horizontal fragmentation methods. 
However, not exists a horizontal fragmentation technique that uses a decision tree. This 
paper presents the analysis of different decision tree algorithms to select the best one to 
implement the fragmentation method. Such analysis was performed under version 3.9.4 
of Weka, considering four evaluation metrics (Precision, ROC Area, Recall and F-measure) 
for different selected data sets using the Star Schema Benchmark. The results showed that 
the two best algorithms were J48 and Random Forest in most cases; nevertheless, J48 was 
selected because it is more efficient in building the model.

KEY WORDS  Data analysis, computer systems, databases, artificial intelligence, decision 
making.

Análisis comparativo de algoritmos de árboles de decisión 
para la fragmentación de almacenes de datos

RESUMEN  Uno de los principales problemas a los que se enfrentan los diseñadores 
de almacenes de datos es la fragmentación. Varios estudios han propuesto métodos de 
fragmentación horizontal basados en la minería de datos. No obstante, no existe una 
técnica de fragmentación horizontal que utilice un árbol de decisión. Este trabajo presenta 
el análisis de diferentes algoritmos de árboles de decisión con el fin de seleccionar el mejor 
para implementar el método de fragmentación. Dicho análisis se realizó bajo la versión 
3.9.4 de Weka, considerando cuatro métricas de evaluación (Precision, ROC Area, Recall 
y F-measure) para diferentes conjuntos de datos seleccionados utilizando el Star Schema 
Benchmark. Los resultados mostraron que los dos mejores algoritmos fueron J48 y Random 
Forest en la mayoría de los casos; sin embargo se seleccionó J48 por ser más eficiente en 
la construcción del modelo.

PALABRAS CLAVE  análisis de datos, sistemas informáticos, bases de datos, inteligencia 
artificial, toma de decisiones.
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Análise comparativa de algoritmos de árvores de decisão 
para a fragmentação de armazéns de dados

RESUMO  Um dos principais problemas aos que se enfrentam os desenhadores 
de armazéns de dados é a fragmentação. Vários estudos hão proposto métodos 
de fragmentação horizontal baseados na mineração de dados. Não obstante, não 
existe uma técnica de fragmentação horizontal que utilize uma árvore de decisão. 
Este trabalho apresenta a análise de diferentes algoritmos de árvores de decisão 
com o fim de selecionar o melhor para implementar o método de fragmentação. Dita 
análise se realizou sob a versão 3.9.4 de Weka, considerando quatro métricas de 
avaliação (Precision, ROC Area, Recall e F-measure) para diferentes conjuntos de 
dados selecionados utilizando o Star Schema Benchmark. Os resultados mostraram 
que os dois melhores algoritmos foram J48 e Random Forest na maioria dos casos; 
entretanto se selecionou J48 por ser mais eficiente na construção do modelo.

PALAVRAS CHAVE  análise de dados, sistemas informáticos, bases de dados, 
inteligência artificial, toma de decisões.
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Introduction

A Data Warehouse —DW— is a theme-oriented, 
integrated, time variable and non-volatile data 
collection in support of management’s decision-
making process. Data warehousing provides 
architectures and tools for business executives to 
systematically organize, understand and use the 
data to make strategic decisions. Data warehousing 
systems are valuable tools in today’s fast-changing 
and competitive world. In recent years, many 
companies have spent millions of dollars building 
company-wide data warehouses. Many people feel 
that with increasing competition across industries, 
data warehousing is the newest indispensable 
marketing strategy and a retention of customers 
way by learning more about their needs (Han, 
Kamber and Pei, 2012).

On the other hand, fragmentation is a distributed 
database design technique that consists of dividing 
each database relation in smaller fragments and 
treating each fragment as an object in the database 
separately, there are three alternatives for that: 
horizontal, vertical and hybrid fragmentation (Ozsu 
and Valduriez, 2020).

One of the main problems faced by DW designers 
is fragmentation. Several studies have proposed data 
mining-based horizontal fragmentation methods, 
which focus on optimizing query response time 
and execution cost to make the DW more efficient. 
However, to the best of our knowledge there not 
exists a horizontal fragmentation technique that 
uses a decision tree to carry out fragmentation. 
Since decision tree classifiers are so popular 
because their construction does not require any 
domain knowledge or parameter setting, they can 
handle multidimensional data, the learning and 
classification steps of decision tree induction are 
simple and fast, and they have good accuracy (Han, 
Kamber and Pei, 2012), and given the importance 
of decision trees in classification, since they allow 
obtaining pure partitions (subsets of tuples) in a 
data set using measures such as Information Gain, 
Gain Ratio and the Gini Index, the aim of this work is 
to use decision trees in the DW fragmentation. This 
paper presents the analysis of different decision 
trees algorithms to select the best one to implement 
the fragmentation method performed under version 

3.9.4 of Weka, considering four evaluation metrics 
(Precision, ROC Area, Recall and F-measure) for 
different selected data sets, using the Star Schema 
Benchmark —SSB— (Star Scheme Benchmark).

This paper is made up of the following parts: (i) 
the introduction; (ii) a review of related works on 
DW horizontal fragmentation; (ii) the methodology 
used in this work for the analysis of decision tree 
algorithms and a description of each algorithm is 
given; (iii) reports the preliminary results in the 
work, and finally (iv) the article is concluded and 
the future work.

Related Works

Cloud SDW (Spatial DW) and spatial OLAP (On-
line Analytical Processing) as a Service concepts 
were presented in Costa et al. (2016). Later those 
concepts were used to describe two different 
hierarchy-based data partitioning techniques 
for the SDW hosted in the cloud: Spatial-based 
partitioning and Conventional-based partitioning. 
In contrast, the approach proposed by Ettaoufik 
and Ouzzif (2017), consisted of an incremental 
horizontal fragmentation technique for the DW 
through a web service. The goal was to automate 
the implementation of incremental fragmentation 
in order to optimize a new query load.

In Barkhordari and Niamanesh (2018), it was 
proposed a method called Chabok, which uses two 
phase Map-Reduce to solve DW problems with 
big data. Chabok fragments horizontally the fact 
table. If there are homogeneous nodes, the same 
number of records is allocated to each Fact-Mapper 
node. As part of their ongoing work on workload-
driven partitioning (Boissier and Kurzynski, 2018), 
implemented an approach called aggressive data 
skipping and extended it to handle both analytical 
and transactional access patterns. The authors 
evaluated their approach with the workload 
and data of a production system of a global 2000 
company.

Likewise, Barr, Boukhalfa and Bouibede (2018) 
used linear programming to solve the NP-hard 
problem of determining a horizontal fragmentation 
scheme in relational DW. Also, Nam, Kim and 
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Han (2018) proposed a graph-based database 
partitioning method called GPT that improves the 
performance of queries with less data redundancy. 
In Letrache, El Beggar and Ramdani (2018), it was 
proposed a dynamic fragmentation strategy for 
OLAP cubes, using association rule mining.

On the other hand, Kechar and Nait-Bahloul 
(2019) presented a horizontal data partitioning 
approach tailored to a large DW, interrogated 
through a high number of queries, the idea was to 
fragment horizontally only the large fact table based 
on partitioning predicates, elected from the set of 
selection predicates used by analytic queries. While, 
in Ramdane et al. (2019), the authors assured that 
horizontal partitioning techniques have been used 
for many purposes in big data processing, such as 
load balancing, skipping unnecessary data loads, 
and guiding the physical design of a DW. Therefore, 
they proposed a new data placement strategy in 
the Apache Hadoop environment called Smart 
Data Warehouse Placement —SDWP—, which 
allows performing star join operation in only 
one Spark stage. The problem of partitioning and 
load balancing in a cluster of homogeneous nodes 
was investigated; experiments using the TPC-DS 
benchmark, showed that the proposed method 
enhances OLAP query performances in terms of 
execution time.

Likewise, in Ramdane et al. (2019), authors 
mixed a data-driven and a workload-driven model 
to create a new scheme for distributed big data 
warehouses over Hadoop, called “SkipSJoin.” First, 
SkipSJoin builds horizontal fragments (buckets) of 
the fact and dimension tables of the DW using a hash-

partitioning method, and distributes these buckets 
evenly over the nodes of the cluster. Then, it allows 
skipping the scanning of some unnecessary data 
blocks, by hash-partitioning some DW tables with 
frequent attributes of the filters. With experiments 
using the TPC-DS benchmark they showed that the 
proposal outperforms some approaches in terms 
of query execution time.

Finally, in Hilprecht, Carsten and Uwe 
(2019), it was introduced that commercial data 
analytics products such as Microsoft Azure SQL 
Data Warehouse or Amazon Redshift provide 
ready-to use-scale-out database solutions for 
OLAP-style workloads in the cloud. Whereas the 
provisioning of a database cluster is in general 
fully automated by cloud providers, customers 
still have to make important design decisions 
which were traditionally made by the database 
administrator such as selecting the partitioning 
schemes, therefore, the authors proposed a 
learned partitioning advisor for analytical OLAP-
style workloads based on Deep Reinforcement 
Learning —DRL—. The leading idea was that a 
DRL agent learns its decisions based on experience 
by monitoring the rewards for different workloads 
and partitioning schemes. The evaluation showed 
that the approach was not only able to find the 
partitioning that outperform existing approaches 
for automated partitioning design but that it can 
also easily adjust to different deployments.

Table 1 provides an analysis of the horizontal 
fragmentation methods discussed above, in which 
their classification and the validation used are 
identified.

Table 1. Comparative table of works on horizontal fragmentation

Work Classification Validation 

Costa et al. (2016) Hierarchy-based Spatial Data Warehouse Benchmark (Spadawan)

Ettaoufik and Ouzzif (2017) Cost-based Benchmark APB-1

Barkhordari and Niamanesh (2018) Map-Reduce-based Benchmark TPC-DS

Boissier and Kurzynski (2018) Cost-based 
Benchmarks TPC-C, TPC-CH (CH-benCHmark), data and 
workload of a SAP ERP system of a Global 2000 company.

Barr, Boukhalfa and Bouibede 
(2018)

Metaheuristic-based Benchmark APB-1
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Work Classification Validation 

Nam, Kim and Han (2018)
Cost-based
Graph-based 

Benchmark TPC-DS, The Internet Movie DataBase (IMDB) 
y BioWarehouse

Letrache, El Beggar and Ramdani 
(2018)

Data mining-based Benchmark TPC-DS

Kechar and Nait-Bahloul (2019)
Cost-based
Predicates-based 

SSB 

Ramdane et al. (2019) Hash-partitioning-based
TPC-DS benchmark using Scala language on a cluster 
of homogeneous nodes, a Hadoop-YARN platform, a 
Spark engine, and Hive.

Ramdane et al. (2019) Hash-partitioning-based TPC-DS benchmark

Hilprecht, Carsten and Uwe (2019)
Deep Reinforcement Learning- 
based 

Different databases schemata and workloads of varying 
complexity.

Source: author own elaboration.

Methodology

In this section, the process followed for 
the analysis of the decision tree algorithms is 
established; after that, each of the algorithms 
available in the version of Weka used are described.

Collection and Preparation of Data

In order to carry out the study of decision tree 
algorithms to select the best one to fragment the DW, 
we use SSB and PostgreSQL. We constructed eight 
data sets, the first four considering 24 queries and 
from two to five fragments, and the second four with 
50 queries also from two to five fragments. We use 
the algorithm proposed by Rodríguez et al. (2014) 
to build the data sets. The resulting data set for 24 
queries and two fragments is visualized in Figure 1.

Figure 1. Data set with 24 queries and 2 fragments. Source: author own elaboration.
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Application of Decision Tree Algorithms

The seven decision tree algorithms that offer 
the version of Weka 3.9.4 were applied to the 
eight data sets. A description of the algorithms is 
presented below.

Hoeffding Tree: It is an incremental, anytime 
decision tree induction algorithm that is capable 
of learning from massive data streams, assuming 
that the distribution generating examples does not 
change over time. Hoeffding trees exploit the fact 
that a small sample can often be enough to choose 
an optimal splitting attribute. This idea is supported 
mathematically by the Hoeffding bound, which 
quantifies the number of observations needed 
to estimate some statistics within a prescribed 
precision (Hulten, Spencer and Domingos, 2001).

Logistic Model Tree: Classifier for building 
LMT, which are classification trees with logistic 
regression functions at the leaves. The algorithm can 
deal with binary and multi-class target variables, 
numeric and nominal attributes and missing values 
(Landwehr, Hall and Frank, 2005).

J48: C4.5 Decision Tree is one of the most 
broadly used and real world approaches. In C4.5 
the learned classifier is represented by a decision 
tree as sets of if-then rules to human readability 
improvement. The decision tree is simple to be 
understood and interpreted; besides, it can handle 
nominal and categorical data and perform well with 
large data set in short time. In C4.5 training, the 
decision tree is built in a top-down recursive way 
(Saeh et al., 2016).

Decision Stump: It is one level decision tree, 
that classifies instances by sorting them based 
on feature values. In a decision stump, each node 
represents a feature in an instance to be classified 
and each branch represents a value that the node 
can take. Instances are classified starting at the 
root node and sorting them based on their feature 
values (Kotsiantis, Tsekouras and Pintelas, 2005; 
Shi et al., 2018).

Random Forest: This algorithm uses bootstrap 
methods to create an ensemble of trees, one for 
each bootstrap sample. Additionally, the variables 
eligible to be used in splitting is randomly varied 
in order to decorrelate the variables. Once the 
forest of trees is created, they vote to determine 
the predicted value of input data (Dean, 2014).

Random Tree: It constructs a tree that considers 
a given number of random features at each node 
(Witten, Frank and Hall, 2011).

REPTree: It builds a decision or regression tree 
using information gain-variance reduction and 
prunes it using reduced-error pruning. Optimized 
for speed, it only sorts values for numeric attributes 
once. It deals with missing values by splitting 
instances into pieces, as C4.5 does. It can be set 
the minimum proportion of training set variance 
for a split, and number of folds pruning (Witten, 
Frank and Hall, 2011).

Results

After having analyzed the different decision 
tree algorithms, the following results were found 
for the Area ROC, Precision, Recall and F-measure 
metrics. Figure 2 to Figure 5 demonstrate that 
considering Recall, Precision, ROC Area and 
F-Measure metrics, respectively, for the 24 queries 
data sets, J48 algorithm was better for three, four 
and five fragments, only for two fragments it was 
overcome by Random Forest.
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Figure 2. Results of Recall metric for 24 queries data sets. Source: author own elaboration.

Figure 3. Results of Precision metric for 24 queries data sets. Source: author own elaboration.

Figure 4. Results of ROC Area metric for 24 queries dataset. Source: author own elaboration.
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Figure 5. Results of F-Measure metric for 24 queries dataset. Source: author own elaboration.

With regards to the data sets of 50 queries, 
the results of the application of the decision tree 
algorithms presented in the Table 2 showed that 
for 2 fragments the best algorithm was REPTree 
because has a better behavior for the 4 metrics. 
While, the Table 3 demonstrates that for 3 fragments 

the best algorithm was Random Forest since it 
presented a better performance than the others. 
In the Table 4 the results for 4 fragments are shown, 
J48 was the best for major of metrics. Finally, in 
the Table 5 the best decision tree algorithm was 
Random Forest for five fragments.

Table 2. Results of decision trees algorithms with 50 queries for two fragments

Algorithm Precision Recall ROC Area F-Measure

Decision Stump 0.875 0.843 0.682 0.832

HoeffdingTree 0.875 0.843 0.885 0.832

J48 0.857 0.843 0.924 0.836

LMT 0.963 0.961 0.910 0.960

RandomForest 0.963 0.961 0.998 0.960

RandomTree 0.864 0.863 0.929 0.860

REPTree 0.964 0.961 0.994 0.961

Source: author own elaboration.
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Table 3. Results of decision tree algorithms with 50 queries for three fragments

Algorithm Precision Recall ROC Area F-Measure

DecisionStump 0.561 0.686 0.691 0.617

HoeffdingTree - 0.745 0.830 -

J48 0.681 0.725 0.679 0.693

LMT 0.722 0.725 0.907 0.723

RandomForest 0.770 0.784 0.934 0.767

RandomTree 0.654 0.647 0.782 0.627

REPTree 0.459 0.608 0.510 0.521

Source: author own elaboration.

Table 4. Results of decision tree algorithms with 50 queries for four fragments

Algorithm Precision Recall ROC Area F-Measure

DecisionStump - 0.431 0.610 -

HoeffdingTree 0.500 0.353 0.645 0.353

J48 0.709 0.706 0.825 0.707

LMT 0.572 0.588 0.830 0.579

RandomForest 0.690 0.686 0.886 0.678

RandomTree 0.501 0.490 0.715 0.487

REPTree 0.548 0.490 0.701 0.487

Source: author own elaboration.

Once the analysis of the decision tree 
algorithms for 25 and 50 queries was concluded, 
it was determined that the two best algorithms were 
Random Forest and J48, so it was decided to select 
J48, since it is more efficient in building the model 
because the computational complexity of the J48 
algorithm given set D is  , where 
n is the number of attributes describing the tuples 

in D and |D| is the number of training tuples in D 
(Han, Kamber and Pei, 2012). In contrast, the time 
complexity for building forest of M randomized 
trees is , where K is the 
number of variables randomly drawn at each 
node and Ñ=0.632|D| (Louppe, 2015). Figure 6 
represents a decision tree created by J48 for the 
50 queries data set and four fragments.

Table 5. Results of decision trees algorithms with 50 queries for five fragments

Algorithm Precision Recall ROC Area F-Measure

DecisionStump - 0.294 0.591 -

HoeffdingTree 0.464 0.314 0.654 0.304



41

A
R

T
ÍC

U
L

O
S

NIDIA RODRÍGUEZ MAZAHUA, LISBETH RODRÍGUEZ MAZAHUA, ASDRÚBAL LÓPEZ CHAU, GINER ALOR HERNÁNDEZ

Revista Perspectiva Empresarial, Vol. 7, No. 2-1, julio-diciembre de 2020, 31-43
ISSN 2389-8186, E-ISSN 2389-8194

Algorithm Precision Recall ROC Area F-Measure

J48 0.671 0.647 0.834 0.642

LMT 0.657 0.667 0.895 0.661

RandomForest 0.749 0.745 0.927 0.743

RandomTree 0.610 0.569 0.779 0.566

REPTree 0.613 0.569 0.770 0.582

Source: author own elaboration.

Figure 6. Decision tree created by J48. Source: author own elaboration.

Conclusions

DW are applied in several areas and allow 
efficient data analysis. Fragmentation in a DW 
allows optimizing response times and execution 
costs for OLAP queries. In this work it is proposed 
to take advantage of the potential of the decision 
trees in the classification to adapt them in the 
process of horizontal fragmentation of the DW 
for that reason, this article described the process 
in which the analysis of different decision trees 
algorithms was carried out, in order to determine 
the best of them to be implemented in a horizontal 
fragmentation method for data warehouses. As 

a result of the analysis, both J48 and Random 
Forest were the best algorithms for decision tree 
induction, and J48 was the selected algorithm for 
the method implementation because it has a time 
complexity lower than Random Forest. The future 
work is the design of the fragmentation method, 
which will consist of determining the most frequent 
OLAP queries, analyzing the predicates used by 
the queries, and based on this build the decision 
tree, from which the horizontal fragments will 
be generated. The method will be implemented 
in a Tourist Data Warehouse which is being 
implemented with data from official sources that 
regulate tourist activity in Mexico.
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